The effect of the COVID-19 health disruptions on breast cancer risk: A semi-Markov modelling approach

Dr. Ayşe Arık

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, and the Maxwell Institute for Mathematical Sciences, UK

joint work with Andrew Cairns, Erengul Dodd, Angus S Macdonald, and George Streftaris

Funding from:

Predictive Modelling for Medical Morbidity Risk Related to Insurance – SoA Estimating The Impact Of The COVID-19 Pandemic On Breast Cancer Deaths - An Application On Breast Cancer Life Insurance – SCOR Foundation for Science

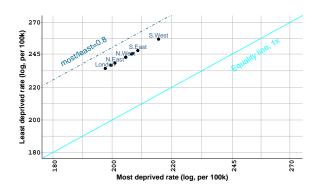
Outline

- Motivation
- Insights on breast cancer
- 3 A semi-Markov model for breast cancer
- A projection model for breast cancer
- Numerical illustrations
- **6** Summary

Motivation

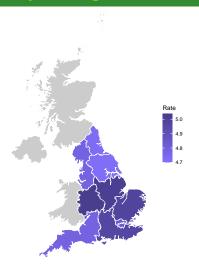
Breast cancer (BC) is

- the most common cancer diagnosed in women
- one of the leading causes of death for women


Investigate BC rates in the presence of:

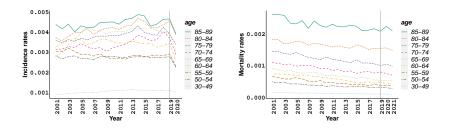
 major disruptions to health services, particularly caused by a catastrophic event, e.g. the COVID-19, preventing or delaying the diagnosis of BC

Projection of BC mortality into the future


Most v. least deprived by region: BC incidence in England - 2017

- Not a life-style cancer
- Rates for least deprived higher (higher screening?)
- Less regional variation as compared to, e.g., lung cancer

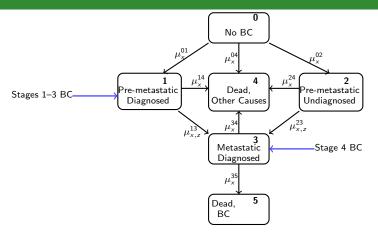
Regional variation: BC mortality in England - 2018


✓ Rate is per 10K✓ Deprivation is not significant

What insights we gain from BC data

- Socio-economic differences are less relevant as compared to, e.g., lung cancer incidence/mortality
- Not (easily) controllable or preventable risk factors
- Regional inequality exists but relatively low
 - High BC screening awareness
 - National BC screening programme for ages 47–73
- The availability of BC screening is crucial for early diagnosis, as BC can be curable

BC incidence and mortality in England: COVID years


 A significant decline in BC incidence, as low as 25% at ages 60–64, in 2020 as compared to the same period in 2019

Incidence (left) v. Mortality (right)

• An increase in BC mortality from ages 65+, as high as 7%, in 2020 as compared to the same period in 2019

Multi-state model for BC transitions

- 'Dead from BC' is only accessible from 'Metastatic Diagnosed'
- Onset of BC remains unchanged $\Rightarrow \mu_{\rm x}^{01} + \mu_{\rm x}^{02} = \mu_{\rm x}^*$
- Treatment is available in 'Pre-metastatic Diagnosed' NOT in 'Pre-metastatic Undiagnosed' $\Rightarrow \mu_{x,z}^{13} < \mu_{x,z}^{23}$

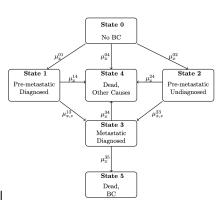
A convenient parametrisation of the model

From

$$\mu_{\rm x}^{\rm 01} + \mu_{\rm x}^{\rm 02} = \mu_{\rm x}^*$$

we can write

$$\begin{split} \mu_x^{01} &= \alpha \, \mu_x^* \\ \mu_x^{02} &= \left(1 - \alpha\right) \mu_x^*, \qquad 0 < \alpha < 1 \end{split}$$

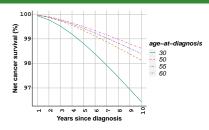

 α : level of BC diagnoses

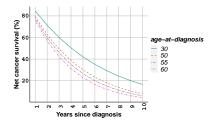
Also we assume

$$\mu_{x,z}^{13} = \beta \, \mu_{x,z}^{23}, \qquad \beta < 1$$

 β : availability of BC treatment Transitions to death due to other causes from all 'live' states are equal to $\mu_{\rm x}^{\rm 04}$

$$\mu_{x}^{14} = \mu_{x}^{24} = \mu_{x}^{34} = \mu_{x}^{04}$$


BC semi-Markov model: pre-Covid rates


Age	$\mu_{\scriptscriptstyle X}^{01}$	$\mu_{\scriptscriptstyle X}^{04}$	$\mu_{\scriptscriptstyle X}^{35}$
30–49	0.00086	0.00084	0.16739
50-54	0.00224	0.00228	0.24005
55-59	0.00233	0.00363	0.24005
60-64	0.00282	0.00588	0.28060
65-69	0.00318	0.00952	0.28060
70-74	0.00280	0.01643	0.36002
75-79	0.00311	0.02987	0.40000
80-84	0.00338	0.05496	0.49711
85–89	0.00362	0.10112	0.50000

- $\mu_{\rm x}^{01}$: ONS/NHS Digital data, 81% of new BC registrations, England, 2001–2019
- \bullet μ_{x}^{04} : ONS data, deaths from other causes, England, 2001–2019
- $\mu_{x,z}^{13}$: Average metastasis rates per 1000 person-years (Colzani et al., 2014)
- μ_x^{35} : BC deaths by age within 12 months after Stage 4 BC diagnosis (Zhao et al., 2020)

BC net survival: pre-Covid rates

Pre-metastatic BC (left) v. Metastatic BC (right)

- ullet Baseline scenarios are carried out for women when lpha= 0.6 and $eta=rac{1}{7}$
- Net Survival: ONLY consider 'Dead, BC' as cause of death AFTER BC diagnosis
- An unusual age pattern in pre-metastatic BC net survival
- Lower metastatic BC net survival at older ages

For a woman aged x, diagnosed with pre-metastatic BC, BC survival in t years:

$$\frac{1 - {}_t p_{\scriptscriptstyle X}^{14} - {}_t p_{\scriptscriptstyle X}^{15}}{1 - {}_t p_{\scriptscriptstyle x}^{14}}$$

BC semi-Markov model - COVID scenario

In order to quantify the impact of COVID-19 on BC mortality at older ages, we have

- Excess deaths from other causes, i.e. increase in $\mu_{\rm x}^{04}$
- Decline in BC diagnosis, i.e. slowdown in $\mu_{\rm x}^{01}$ and increase in $\mu_{\rm x}^{02}$

Pandemic period	$\mu_{_{X}}^{01}/\mu_{_{X}}^{02}$	μ	04 ×
	α	65–84	85–89
April-Nov. 2020	0.8	1.13	1.12
Dec. 2020-Nov. 2021	1	1.13	1.12
Dec. 2021-Dec. 2022	1	1.10	1.09
JanDec. 2023	1	1.07	1.06
JanDec. 2024	1	1.04	1.03

Short-term implications up to 5 years

Occupancy Probabilities										
	From State 0				From	State 1	From S	State 3		
Age	$_{5}p_{\times}^{00}$	$_{5}p_{_{\times}}^{01}$	$_{5}p_{x}^{02}$	$_{5}p_{\times}^{03}$	$_{5}p_{x}^{04}$	$_{5}p_{x}^{05}$	$_{1}p_{\times}^{15}$	$_{5}p_{_{X}}^{15}$	$_{1}p_{_{X}}^{35}$	$_{5}p_{_{X}}^{35}$
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Pre-pandemic calibration										
65-69	93.09	1.47	0.68	0.31	4.29	0.16	0.16	5.98	24.36	74.15
70-74	90.49	1.22	0.57	0.23	7.32	0.16	0.20	6.82	30.02	81.25
75-79	85.07	1.31	0.61	0.24	12.59	0.19	0.22	6.97	32.56	82.61
80-84	75.07	1.26	0.59	0.20	22.66	0.21	0.26	7.21	38.26	84.79
85-89	59.71	1.07	0.50	0.17	38.36	0.19	0.25	6.29	37.65	79.54
Pandemic scenario										
65-69	92.73	1.42	0.70	0.32	4.66	0.17	0.16	5.96	24.36	74.03
70-74	89.90	1.18	0.58	0.24	7.93	0.17	0.20	6.79	30.00	81.03
75-79	84.09	1.25	0.62	0.24	13.60	0.20	0.22	6.91	32.53	82.24
80-84	73.42	1.20	0.59	0.21	24.36	0.22	0.26	7.10	38.20	84.15
85–89	57.53	1.00	0.49	0.17	40.61	0.20	0.25	6.12	37.55	78.56

- 3–6% decline in age-specific, $_5p_{_X}^{01}$, 'Pre-metastatic Diagnosed'
- 3–5% increase in, $_5p_{_X}^{03}$, 'Metastatic Diagnosed' (Vulnerability? Higher deaths from BC and other causes?)

Changes in BC pre- v. post-pandemic

	Addition	al deaths	Y	LL	AC in	BC mort	tality from (%)		
	Dead	Dead	Dead	Dead	Pre-metastatic		Metastatic		
	(Other)	(BC)	(Other)	(BC)	Diagnosed				
	State 4	State 5	State 4	State 5	State 1		Sta	State 3	
Pre-pandemic calibration v	r				1	E	1	E	
Pandemic scenario					1 year	5 year	1 year	5 year	
65–6	9 363	10	7010	193	0.00	-0.02	0.00	-0.12	
70–7	4 607	9	9293	138	0.00	-0.03	-0.02	-0.22	
75–7	9 1012	10	11770	116	0.00	-0.06	-0.03	-0.37	
80–8	4 1699	9	14340	76	0.00	-0.11	-0.06	-0.64	
85-8	9 2253	6	13158	35	0.00	-0.17	-0.10	-0.98	

- 100,000 women in each age group, in 'No BC' at time zero, taken as January 1, 2020
- 3-6% increase in 'Dead from BC' and 5-8% increase in 'Dead from Other Causes' for women, with 'No BC' at time zero, across different ages over 5 years
- Absolute change (AC) in BC mortality is less than 1%

Years of life expectancy lost (YLL) from a given cause is:

$$YLL_{x,t}^{cause} = D_{x,t}^{cause} e_x$$

where $D_{x,t}^{\text{cause}}$ is age- and type-specific additional deaths; and

 e_x is defined using standard life tables

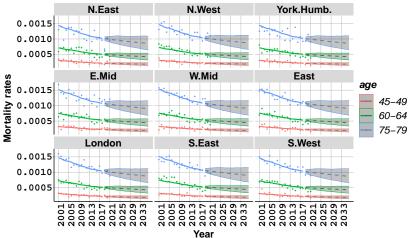
Sensitivity analysis

- Sensitivity analysis is carried out, all else equal, with
 - $\alpha =$ 0.4 and $\alpha =$ 0.8 (lower v. higher BC diagnoses)
 - $\beta = \frac{1}{5}$ and $\beta = \frac{1}{10}$ (worse v. better BC treatment)
 - $\mu_{\rm x}^{35}$ is 20% lower and higher than the pre-pandemic level (lower v. higher BC deaths)
- Consistent results in relation to relative changes in BC mortality and deaths from different causes, under pre- and post-pandemic scenarios

A projection model: BC mortality in England, 2001–2018

$$\begin{split} D_{a,t,r} &\sim \mathsf{Poisson}(\theta_{a,t,r} \ E_{a,t,r}) \\ \theta_{a,t,r} &\sim \mathsf{Lognormal}(\mu_{a,t,r}, \sigma^2) \\ \mu_{a,t,r} &= \beta_0 + \beta_{1,a} + \beta_{2,t} + \beta_{3,r} \\ \sigma^2 &\sim \mathsf{Inv.Gamma}(1,0.1) \\ \beta_0, \ \beta_1, \ \beta_3 &\sim \mathsf{Normal}(0,10^4) \quad [\mathsf{vague priors for risk factor effects}] \end{split}$$

Add random walk with drift for 'period' effect:


$$\begin{split} \beta_{2,t} &= \mathsf{drift} + \beta_{2,t-1} + \epsilon_t \\ \mathsf{drift} &\sim \mathsf{Normal}(0, \sigma_{\mathsf{drift}}^2) \\ \epsilon_t &\sim \mathsf{Normal}(0, \sigma_{\beta_2}^2) \\ \sigma_{\beta_2}^2 &\sim \mathsf{Inv.Gamma}(1, 0.001) \end{split}$$

for
$$t=2001,2002,\ldots,2018$$
, where $\hat{\sigma}_{\mathsf{drift}}^2=\frac{\hat{\sigma}_{\beta_2}^2}{2018-2001}$

- $D_{a,t,r}$: number of cancer deaths at age a in year t for region r
- E_{a,t,r}: mid-year population estimates

Projected mortality: BC mortality - women, ages 45–79, 2001–2036

- Decreasing trend over time
- Projected rates for youngest & oldest screening age groups NOT overlapping

Summary

- More equality in BC as compared to life-style cancers
- A valuable model relating to delays in the provision of BC diagnostic and treatment services
- As compared to the pre-pandemic scenario
 - 3-6% increase in deaths from BC and 5-8% in other causes between ages 65-89
 - Less than a 1% change in the probability of death for women with pre-metastatic BC (sp_x^{15})
 - A relatively significant change in the probability of death for women with metastatic BC $(5\rho_x^{35})$ as compared to women with pre-metastatic BC
- Less than 1% change in net single premiums when key transition rates are defined including COVID years
- Projection for BC mortality shows persistent age gap
- Duration dependence matters in actuarial applications
- Measuring parameter and model uncertainty?

More details in:

- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Shao, A., Streftaris, G. Insurance pricing for breast cancer under different multiple state models, working paper.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. The effect of the COVID-19 health disruptions on breast cancer mortality for older women: A semi-Markov modelling approach, https://arxiv.org/abs/2303.16573.
- Arık, A., Cairns, A., Dodd, E., Macdonald, A.S., Streftaris, G. Estimating the impact of the COVID-19 pandemic on breast cancer deaths among older women, Living to 100 Research Symposium, 16 February 2023, conference monograph.
- Arık, A., Dodd, E., Cairns, A., Streftaris, G. Socioeconomic disparities in cancer incidence and mortality in England and the impact of age-at-diagnosis on cancer mortality, PLOS ONE, 2021.
- Arık, A., Dodd, E., Streftaris, G. Cancer morbidity trends and regional differences in England - a Bayesian Analysis, PLOS ONE, 2020.

Thank You!

Questions?

E: A.ARIK@hw.ac.uk

W: https://researchportal.hw.ac.uk/en/persons/ayse-arik

