

CONTAMINATION MODELS: ESTIMATION, TEST & CLUSTERING

AFRIC Conference Zimbabwe, 2023/7/25

Xavier MILHAUD

Actuary and Associate Professor

Aix-Marseille University (AMU) - Department of Statistics

Joint work with

Denys Pommeret (D.P.)

Yahia Salhi (Y.S.) Pierre Vandekerkhove (P.V.)

- Motivation and framework
- 2 Estimation and Test (with $k \ge 2$ samples)
- 3 Clustering (with $K \ge 2$ samples)

THE CONTAMINATION MODEL FRAMEWORK

An admixture (aka contamination) model is a specific 2-component mixture model where **one of the two components is known**.

Consider an iid random sample $X = (X_1, ..., X_n)$ drawn from the admixture model with cdf L.

We have:

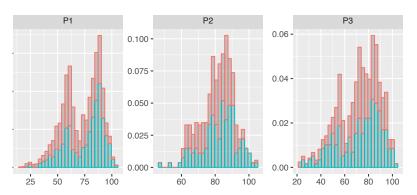
$$L(x) = p F(x) + (1 - p) G(x), \qquad x \in \mathbb{R}$$
 (1)

with **G** a known cdf (gold standard), and $p \in]0, 1[$.

Goal : estimate from $(X_1, ..., X_n)$ the unknown component weight p and the unknown cdf F, under minimal assumptions.

AN EXAMPLE : MORTALITY EXPERIENCE

Women (blue), men (red)



In actuarial science/finance, plenty of situations where the distribution looks like this (claim distributions, customer behaviours, ...).

HYPOTHESIS TEST ON THE UNKNOWN COMPONENT

To perform the test, we use the **decontaminated** version of the unknown component density F.

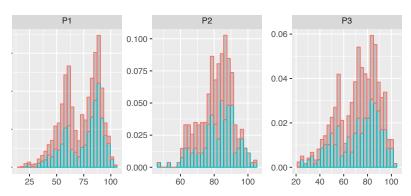
Suppose that p has been consistently estimated, then from the sample providing \hat{L} the decontaminated unknown cdf follows

$$\hat{F}(x) = \frac{\hat{L}(x) - (1 - \hat{p})G(x)}{\hat{p}}, \qquad x \in \mathbb{R}.$$
 (2)

With 1 sample: test $H_0: F \in \mathcal{F}$ against $H_1: F \notin \mathcal{F}$.

With 2 samples, one could test $[H_0: F_1 = F_2]$ against $H_1: F_1 \neq F_2$

PRICING WITH 'UNCAPTURED' HETEROGENEITY



Assume P1, P2 and P3 are portfolios with low exposure...and

- heterogeneous age-at-death distributions (mixture profile),
- well-known age-at-death distrib. in general pop. (gold standard).
- ⇒ Could we pool them to increase exposure for pricing?

- Motivation and framework
- 2 Estimation and Test (with $k \ge 2$ samples)
- 3 Clustering (with $K \ge 2$ samples)

THE IBM APPROACH (2 samples)

- \rightarrow Cramer-Von Mises type test : CLT for estimators of unknown p_i 's and F_i 's and known stochastic behavior of empirical contrast $n\hat{d}_n(\hat{\theta}_n)$.
- → Inversion / Best Matching (IBM) : with the discrepancy measure

$$d(\theta) = \int_{\mathbb{R}} (F_1(x, p_1) - F_2(x, p_2))^2 dU(x), \tag{3}$$

with $\theta = (p_1, p_2) \in \Theta = [\delta_1, \delta_2]^2$.

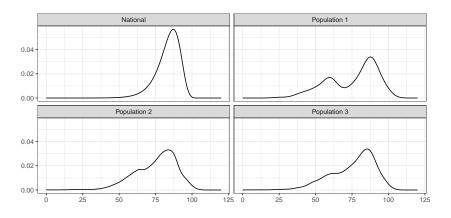
→ X.M., D.P., Y.S., P.V. **Two-sample contamination model test**. Bernoulli (2023), https://hal.science/hal-03985733.

→ R package admix :

https://cran.r-project.org/web/packages/admix/index.html

APPLICATION: SPECIFIC MORTALITY POOLING

→ Back to our 3 portfolios (age-at-death densities for female here). From top left to bottom right : french national pop., P1, P2, and P3.



No obvious similar behaviour... Maybe populations 2 and 3?

RESULTS

	Size	Life expectancy	Weight \hat{p}	P1	P2	P3
P1	1 251	75.42	0.4603	_	23.28	0.717
P2	7 356	74.91	0.7003	1.4e-06	_	18.48
P3	3 456	75.56	0.6281	0.397	1.7e-05	_

 \rightarrow According to the test, populations 1 and 3 share a common behaviour (F_1 and F_3) characterizing their specific mortality profile... ... whereas other portfolios combinations lead to reject H_0 .

⇒ P1 and P3 could be pooled together for pricing!

Limit: pairwise comparisons instead of global test...

EXTENSION OF THE TEST TO THE k-SAMPLE CASE

Consider k > 2 samples, each sample $X^{(i)} = (X_1^{(i)}, ..., X_{n_i}^{(i)})$ follows

$$L_i(x) = \rho_i F_i(x) + (1 - \rho_i)G_i, \qquad x \in \mathbb{R}.$$

The test to perform is given by

$$H_0: F_1 = ... = F_k$$
 against $H_1: F_i \neq F_j$ for some $i \neq j$.

To do so, compare pop. i and j by defining sub-(i, j)-testing problem :

$$H_0(i,j)$$
: $F_i = F_j$ against $H_1(i,j)$: $F_i \neq F_j$, (4)

Then,

- \rightarrow Apply **IBM** for each pair (i,j) & build a series of **embedded statistics**.
- \rightarrow Add a penalization term to select the right number of terms in the final test statistic.

- Motivation and framework
- 2 Estimation and Test (with $k \ge 2$ samples)
- 3 Clustering (with $K \ge 2$ samples)

CLUSTER POPULATIONS INSTEAD OF INDIVIDUALS

Adapt the previous test procedure to obtain a data-driven method to cluster *K* unknown populations into *N* subgroups (characterized by a common unknown mixture component).

- N of clusters is automatically chosen by the procedure,
- Each subgroup is validated by the previous testing method.

Novelty: allows to cluster unobserved subpopulations (via unknown components).

- \rightarrow Not trivial because of unknown p_i 's...
- \rightarrow Preprint : X.M., D.P., Y.S., P.V.. Contamination source based K-sample clustering, submitted, 2023. https://hal.science/hal-04129130.

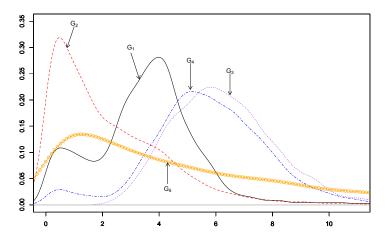
ALGORITHM: A BASIC IDEA

K-sample 2-component mixture clustering (K2MC)

- 1] Initialization: create the first cluster to be filled, *i.e.* c=1. By convention, $S_0=\emptyset$.
- 2] Select $\{x, y\} = \operatorname{argmin}\{d_n(i, j); i \neq j \in S \setminus \bigcup_{k=1}^c S_{k-1}\}.$
- 3] Test H_0 between x and y. If H_0 is not rejected then $S_1 = \{x, y\}$, Else $S_1 = \{x\}$, $S_{c+1} = \{y\}$ and then c = c + 1.
- 4] While $S \setminus \bigcup_{k=1}^c S_k = \emptyset$ do Select $u = \operatorname{argmin}\{d(i,j); i \in S_c, j \in S \setminus \bigcup_{k=1}^c S_k\}$; Test H_0 the simultaneous equality of all the f_j (k-sample test), $j \in S_c$: If H_0 not rejected, then put $S_c = S_c \cup \{u\}$; Else $S_{c+1} = \{u\}$ and c = c + 1.

End While

PLEASE CLUSTER THESE 5 POPULATIONS



Possible choices: [(3,4), (2,5), 1] or [(3,4), 1, 2, 5)] or [(1,2), (4,5), 3]?

Connect to www.menti.com (code: 2732 4825)

SOLUTION

	Pop.1	Pop.2	Pop.3	Pop.4	Pop.5
Size n _i	2000	2500	2000	4500	4000
Unknown weight p _i	0.6	0.12	0.15	0.08	0.1
Known distribution G _i	$\mathcal{E}(1/3)$	$\mathcal{E}(1/2)$	G(13, 2)	G(12, 2)	$\mathcal{E}(1/6)$
"Unknown" distribution F_i	G(16,4)	G(16,4)	G(15,3)	$\mathcal{E}(1/2.5)$	$\mathcal{E}(1/2.5)$

```
1 Population 1: 0.6 G(16; 4) + 0.4 E(1/3)
```

2 Population 2:
$$0.12 G(16; 4) + 0.88 E(1/2)$$

o Population 3:
$$0.15 \mathcal{G}(15;3) + 0.85 \mathcal{G}(13;2)$$

Output Population 4:
$$0.08 \mathcal{E}(1/2.5) + 0.92 \mathcal{G}(12;2)$$

5 Population 5:
$$0.1 \mathcal{E}(1/2.5) + 0.9 \mathcal{E}(1/6)$$

⇒ Clusters to be found :

3 clusters (pop. (1,2); (4,5) and 3)!

CONCLUSION

Fully implemented in R package admix!

- → Fully tractable solution without shape constraints;
- → Allows for hypothesis testing and clustering;
- → Clustering is made on unknown/unobserved phenomenons;
- → An application to the covid-19 pandemics in our last paper (clustering countries).
- → Actuarial applications whenever pooling can benefit!

Thanks for your attention

2024 JOINT COLLOQUIUM

ASTIN
AFIR/ERM
IAAHS
IAALS
IACA
PBSS

Subscribe to mailing list on

Joco2024.org

RECONNECTING ACTUARIES

SEPTEMBER 22 to 26, 2024

BRUSSELS

APPENDIX 1 : 2-sample TESTING STRATEGY

- Inner model convergence regime caracterized by Z(θ*, L₁, L₂) and Z(θ^c, L₁, L₂) under both H₀ and H₁ (closed form stochastic integrals) ⇒ Hypothesis-free test quality!
- Possibility to sample them using $Z(\hat{\theta}_n, \hat{L}_1, \hat{L}_2)$.
- $(1-\alpha)$ -quantile Monte Carlo estimation of the stochastic integral $Z(\hat{\theta}_n, \hat{L}_1, \hat{L}_2)$ denoted $\hat{q}_{1-\alpha}$.

Finally, H_0 -rejection rule:

$$n\hat{d}_n(\hat{\theta}_n) \geq \hat{q}_{1-\alpha}.$$
 (5)

Interpretation: if the test statistic is too far from the inner model convergence regime we suspect that something goes wrong.

APPENDIX 2: *k*-sample test, steps of the approach

Apply the theoretical results of IBM for each pair of populations (i,j), and then **build a series of embedded statistics**.

Then, $\forall i \neq j \in \{1, ..., k\}$,

- Estimate $\widehat{\theta}_n(i,j) = \arg\min_{\theta \in \Theta_{i,j}} d_n[i,j](\theta)$,
- ② Compute the statistic $T_{i,j} = n d_n[i,j](\widehat{\theta}_n(i,j))$.

We then obtain d(k) = k(k-1)/2 comparisons that we embed :

$$U_{1} = T_{1,2}$$

$$U_{2} = T_{1,2} + T_{1,3}$$

$$\vdots$$

$$U_{d(k)} = T_{1,2} + \cdots + T_{k-1,k},$$

Consider the penalization rule (mimicking Schwarz criteria):

$$S(n) = \min \left\{ \arg \max_{1 \le r \le d(k)} \left(U_r - r \sum_{(i,j) \in S(k)} I_n(i,j) \mathbb{I}_{\{r_k(i,j) = r\}} \right) \right\}.$$

N.B. : I_n if of the form n^{ϵ} , where ϵ should be tuned depending on our guess (H_0, H_1) to improve the test quality (further details in the paper).

⇒ Our data-driven test statistic is given by

$$\tilde{U}_n = U_{S(n)}$$
.

Simulation results:

- → The test shows good empirical levels in many different situations,
- \rightarrow It also has satisfactory empirical power, provided that $n_i p_i$ is high enough.