

UNSW Engineering

Bachelor of Engineering (Honours) (Chemical Product Engineering)

What do chemical product engineers do?

Chemical product engineers identify customer needs and create innovative products that meet those needs. They create new materials, processes, and technologies in industries producing pharmaceuticals, cosmetics, biomedical devices, and advanced materials. As a product engineer, you can develop products people use in everyday life, designing new shampoos, paints, or foods to be sustainable, environmentally friendly, affordable, and high performance.

Chemical Product Engineering is based on a new frontier for chemical engineers, with a strong emphasis on product design and development. Its potential uses are practically unlimited in industrial and scientific fields. As a product engineer your success is measured by the ability to develop innovative solutions, affordably apply new discoveries in chemistry and chemical engineering, and deliver novel products for the future.

What will your study involve?

This degree focuses on product design and development in a collaborative and innovative culture. You'll build on study of chemistry, physics, engineering, and economics to create commercial products in fields spanning the pharmaceuticals, cosmetics, agricultural and food industries. The degree ensures that graduates can meet rapidly changing customer demands for new materials, products, and ingredients in the global marketplace.

UNSW Chemical Product Engineering

- UNSW Chemical Engineering is ranked 2nd in Australia (Academic Ranking of World Universities (ARWU), 2023).
- Close links with key industrial, commercial and professional organisations providing unique student led projects and industry-based training.
- Hands on la- based courses in state-of-the-art labs using real process equipment.
- Product design Thesis projects developing actual product prototypes along with viable commercial intellectual property strategies.

Program details

Lowest Selection Rank (2025): 92

Duration: Four-year embedded honours degree

Study areas: Chemical Product Design, Chemical Reaction and Separation Engineering, Organic and Inorganic Chemistry, Advanced Thermodynamics, Polymer Science, Sustainability, Entrepreneurship and Innovation Management and Patenting.

Assumed knowledge: Mathematics Extension 1, Physics, Chemistry

Portfolio Entry

UNSW offers the Faculty of Engineering Admission Scheme (FEAS) which is a pathway for students interested in studying undergraduate engineering to support their academic results, find out more at

unsw.to/feas

Accreditation

Your Bachelor of Engineering (honours) degree is recognised globally, it's accredited with Engineers Australia, and is also acknowledged by the Washington Accord, which lets you work in over 20 countries across the globe upon graduation.

Career options

This broad degree opens doors to many different industries including energy, materials science, fine chemicals, pharmaceuticals, health, cosmetics, household care, food, the environment and electronics

With a strong foundation in chemical process engineering, the product design element of this degree will give you a valuable employability edge. The ability to design and take a product to market is a highly sought after skill among employers.

Example Study Plan

Year 1		
Term 1	DESN1000 Introduction to Engineering Design and Innovation	
	CHEM1811 Engineering Chemistry 1A	
	MATH1131 Mathematics 1A <u>OR</u> MATH1141 Higher Mathematics 1A	
Term 2	ENGG1811 Computing for Engineers	
	CHEM1821 Engineering Chemistry 1B	
	MATH1231 Mathematics 1B <u>OR</u> MATH1241 Higher Mathematics 1B	
Term 3	CEIC1000 Sustainable Product Engineering and Design	
	CHEM2041 Analytical Chemistry: Essential Methods	
	PHYS1121 Physics 1A <u>OR</u> PHYS1131 Higher Physics 1A	

Year 2		
Term 1	CEIC2000 Materials and Energy Systems	
	CEIC2001 Fluid and Particle Mechanics	
	MATH2089 Numerical Methods and Statistics	
Term 2	CEIC2002 Heat and Mass Transfer	
	CEIC2005 Chemical Reaction Engineering	
	CHEM2021 Organic Chemistry: Mechanisms & Biomolecules	
Term 3	CHEM2031 Inorganic Chemistry: The Elements	
	DESN2000 Engineering Design and Professional Practice	
	CEIC3001 Advanced Thermodynamics and Separation	

Year 3		
Term 1	MATH2018 Engineering Mathematics 2D	
	CHEM3021 Organic Chemistry: Modern Synthetic Strategies	
	General Education Course	
Term 2	CEIC8104 Topics in Polymer Technology	
	General Education Course	
	Free Elective Course	
Industrial Training		

Year 4		
Term 1	CEIC4007 Product Design Project Thesis A	
	CEIC6711 Complex Fluids Microstructure & Rheology	
	Discipline Elective Course	
Term 2	CEIC4008 Product Design Project Thesis B	
	CEIC8204 Entrepreneurship & the Innovation Cycle	
	Discipline Elective Course	
Term 3	CEIC4000 Environment and Sustainability	
	Discipline Elective Course	

NOTES

You'll be required to complete 60 days of Industrial Training throughout your degree.

This degree example is indicative only and subject to change at any time without prior notice. For the latest degree information visit the relevant UNSW Handbook page atwww.handbook.unsw.edu.au.

UNSW's new 'flex-semester' calendar is scheduled to start in 2028.

For more information see https://www.unsw.edu.au/academic-calendar-project.

Visit the Degree Finder page here!